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ABSTRACT

The aim of the paper is to study the behavior of {(complete) pluripolar sets
under special holomorphic mappings (proper mappings and coverings).

1. Introduction

Let D be a domain in C*. We denote by PSH(D) the set of all plurisubharmonic
functions in D. We assume that the constant function —oo is a plurisubharmonic
function. Following P. Lelong (see [Lel]), we say that a set P C D is pluripolar
if for any point zg € D there is a connected open neighborhood U of 2y and
a plurisubharmonic function v € PSH(U), u # —oo, such that PNU C {z €
U : u(z) = —oo}. According to Josefson (see [Jos]), the local definition of
pluripolarity coincides with the global definition, i.e., for any pluripolar set P C
D there exists a plurisubharmonic function v € PSH(D), u # —oc, such that

)] PcC{z€D:u(z)=-o0}.

In the case of equality in (1), we say that P is complete pluripolar. For n =1,
we call P polar and complete polar, respectively.

It is easy to see that any complete pluripolar set must be of Gs-type. By
Deny’s theorem (see, e.g., [Lan]) for any polar set P in C of Gs-type there exists a
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subharmonic function v € SH(C) such that P = {x € C: u(z) = —oo}. In higher
dimension the situation is more complicated. Take P =V x {0} C C2, where V
is a non-polar subset of C. Then any plurisubharmonic function u € PSH(C?)
which is equal to —oo on P is to equal —oo on the set C x {0}. To describe this
phenomenon of “propagation” of pluripolar sets N. Levenberg and E. A. Poletsky
[Lev-Pol] considered two types of pluripolar hulls of a pluripolar set P in a domain
D:

P = ﬂ{z € D:ufz) = —o0},
where the intersection is taken over all plurisubharmonic functions in D which
are —oo on P, and

P, = ﬂ{z € D :u(z) = ~o0},
where the intersection is taken over all negative plurisubharmonic functions in D
which are —oo on P. Note that Py, C Pp.

There is a nice relation between these two pluripolar hulls.

THEOREM 1 (see [Lev-Pol]): Let D be a pseudoconvex domain in C* and let D,
be an increasing sequence of relatively compact domains with | Joo., D, = D. Let
P C D be pluripolar. Then

o0

Py=J(PnD,)p,.
v=1
Moreover, if D is a hyperconvex domain, then P}, = Pp;. Recall that a bounded
domain D C C" is called hyperconvex if there exists a negative plurisubharmonic
exhaustion function u of D, i.e., {z € D : u(z) < B} is relatively compact in D
for any 8 < 0 (see, e.g., [Kli]).
Note that for any complete pluripolar set P in D we have P;; = P. As a

partial converse of this remark we have the following result.

THEOREM 2 (see [Zer]): Let D be a pseudoconvex domain in C*. Assume that
P C D is of F,-type. Then P is a complete pluripolar set in D if and only if P
is of G5-type and P}, = P.

Theorem 2 shows the importance of pluripolar hulls in the study of complete
pluripolarity. Another advantage is the relation between pluripolar hulls and the
relative extremal function. For a domain D in C" and any subset £ C D we
define the relative extremal function as follows:

w(z, E, D) := sup{u(z) : v € PSH(D), u < —1on F, u <0 on D}.

We have the following very useful result.
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THEOREM 3 (see [Lev-Pol]): Let D be a domain in C* and let P C D be a
pluripolar set. Then

Py ={z2€D:w(z,P,D)<0}.

Using the above-mentioned results we study the behavior of pluripolar hulls
under special holomorphic mappings (proper mappings and coverings).

THEOREM 4: Let D,G be domains in C* and let h : D — G be a proper
holomorphic mapping. Then for any pluripolar set P C D we have

h(P)& = h(P) and h(P)3 = h(Pp).

Moreover, if P is a complete pluripolar set in D, then h(P) is a complete pluripo-
lar set in G.

The proof of Theorem 4 is given in Section 2.

As we see, the invariance of pluripolar hulls under proper holomorphic map-
pings is quite clear. The situation with holomorphic coverings seems to be much
more complicated. We introduce a class of holomorphic coverings (A-coverings)
for which we are able to say more on pluripolar hulls. As a corollary we solve the
problem of invariance for product type domains. Namely, we have the following.

THEOREM 5: Let Dq,...,D,, Gy,...,G, be domains in C such that 8G;,..
0G,, are non-polar. Assume that h,: D; — G, j = 1,...,n, are holomorphic
coverings. Put D := Dy x--- X Dy, G:= Gy X --- X Gy, and h := (hy,..., h,).
Then for any pluripolar set P C D we have

M

(2) h(P)g = (P)g = MPp) = MPp)-

The proof of Theorem 5 is given in Section 4. Special cases of Theorem 5
could be found in [Lev-Pol], [Wiel]. As we shall see (Example 24) equality (2) in
general (i.e., for any holomorphic covering and any pluripolar set) does not hold.
We give also some examples and applications of our results.

ACKNOWLEDGEMENT: The author thanks Marek Jarnicki and Wlodzimierz
Zwonek for precious and very helpful remarks. I also thank the referee for
suggestions related to Theorem 5.
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2. Proof of Theorem 4

Note that, generally, there is no problem with the preimage of a complete pluri-
polar set under holomorphic mapping. Using the fact that the composition of
a plurisubharmonic function, and a holomorphic mapping is a plurisubharmonic
function, we have the following result.

THEOREM 6: Let D,G be domains in C* and let h : D — G be a non-constant
holomorphic mapping. Then:
(a) for any pluripolar set P C D we have

h(Pp) C h(P); and h(Pp) C h(P)g,
(b) for any pluripolar set @ C G we have
(A1 Q)p C QL) and (hTH(Q))p C hTHQg)-

Moreover, if Q is a complete pluripolar set in G, then h~1(Q) is also complete
pluripolar in D.

Before we present the proof, recall the following definition and result. Let D,G
be domains in C* and let h: D — G be a holomorphic mapping. Suppose that
z € D is an isolated point of the set h=1(h(z¢)). It is well-known (see, e.g., [Sha])
that there exist domains U C D and V C G such that A= (h(z)) NU = {2z}
and hJy: U — V is a proper holomorphic mapping. We denote m,,(h) the
multiplicity of a proper holomorphic mapping |y.

THEOREM 7 (see [Lar-Sig]): Let D,G be domains in C* and let h: D — G be a
proper holomorphic mapping. Let u be a plurisubharmonic function on D. Then
the function defined by the formula

i(w) = Y m(h)u(2)

z2€h~1(w)

is plurisubharmonic on G.

Proof of Theorem 4: We know that h{P)g D h(Pp) and h(P)g D h{Pp). So,
for the equality of these sets it is enough to show that A(P); C h(Pp) and
h(P)g C h(Pp).

Fix a point wg ¢ h(P}). Then h~!(wp) N P} = 0. Assume that A~ '(wg) =
{#1,...,2k}. For any j € {1,...,k} there is a u; € PSH(D) such that u; = —oc0
on P, u,(z;) > —o0.
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Put u := max{uj,...,ux}. Note that v € PSH(D), v« = —oc on P, and
u(zy) > —oc, j =1,...,k. Take & € PSH(G) defined in Theorem 7. It is easy to
see that & = —oo on h(P) and @(we) > —o0. So, wp & h(P)g.

In a similar way we show that h(P)g C h(Pp).

The proof is completed by noting that if P = {z € D : u(z) = —oo}, where u
is a plurisubharmonic function on D, u # —oo, then % defined in Theorem 7 is
such that h(P) = {w € G : @(w) = —o0}. ]

3. Sequences of holomorphic mappings and pluripolar hulls

The main result of this part is the following.

THEOREM 8: Let D,G be domains in C* and let h: D — G be a holomorphic
covering. Assume that there exist {F;};2, C Aut(D) such that for any z € D
we have h~1(h(z2)) = U]:I{F (2)}. Then for any pluripolar set P C D we have

(R (h(P)p = k" (h(PH)) and (h™ (h(P))p = h™*(h(Pp)).

We prove this result in a sequence of lemmas. We start with the investigation
of the sequences of pluripolar sets and their pluripolar hulls.

LEMMA 9: Let D be a domain in C* and let P, C D be a sequence of pluripolar
sets. Then

BZU )p and (UPD—U(P

Proof of Lemma 9: Note that

?Cg

U
s
>
S

(UP)po>U®P)p and (

=1 =1 J

P)p
1 j=1

s

Hence, we shall have established the lemma if we prove the following (U;";l P)p
C U (By)p and (U2, P) € U (P)5.

Let zo ¢ UjZ,(Pj)b- Let Dj € Djta C D, U2, D; = D, be an exhaustion
of D. For any j € N there exists u; € PSH(D) such that u; = —o0 on P,
and u;(2p) > —oc. Take constants «; > 0,3; such that for a plurisubharmonic
function @, := a;(u; + f,) we have

(i) % < 0 on D;,

(ii) @, (20) > —1/27,

(iii) ¥; = —oo on P,.
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Set u := 3 52, ;. Then u € PSH(D), u = —oo on U2, P, and u(z) > ~1.
Hence, 20 ¢ (U2, P5)b-
In a similar way (put 8, = 0) we show (U2, Pj)p C U] {(Pj)p- |

LEMMA 10: Let D be a domain in C* and let {F};}32, C Aut(D). Then for any
pluripolar set P C D we have

oo oo o o
(UE®@), = FPp) and (|JFP)s = FPp)
i=1 =1 i=1 i=1
Proof of Lemma 10: It follows from Theorem 4 and Lemma 9. |

Proof of Theorem 8: 1t suffices to remark that h~'(h(P)) = U2, F; (P). ]
The next two results allow us to construct automorphisms like in Theorem 8.

PROPOSITION 11: Let D,G be domains in C* and let D be simply connected.
Then for any holomorphic covering h : D — G there exist {F;}52, C Aut(D)
such that for any z € D we have h™'(h(2)) = Ui {Fy(2)}-

Proof of Proposition 11: Step 1. Let zp € D be fixed. Then h=(h(20)) =
{z0,21,22,...}. For any j = 0,1,2,... there exists a holomorphic mapping
Fj: D — D such that ho F; = h and Fj(z) = z;.

In the same way, there exists a holomorphic mapping G;: D — D such that
hoG; = h and G;(z;) = 2. Note that ho F;0G;(z;) = h(z;). So, Fj0G; = idp.
Hence, F; € Aut(D), j=0,1,2,....

Step 2. Take any z € D. We have ho F)(z) = h(z), j = 0,1,2,.... Hence
U2 {F(2)} € = ().

Step 3. Fix 2y # 29. According to Step 1 there are 17']- € Aut(D) such that
B (h(@) = U5Z, {Fj (7o)}

Fix jo € N. Then according to Step 2, Fj, (%) € U;il{f}(%)} Hence, there
exists j1 € N such that Fj (%) = 1~7‘Jl (Zo)-

Note that F oFJ0 (Zo) = Zp and, therefore, hoF Lo F; (%) = h(%). Hence,
FjloF, ldD and F,, = Fj,. So, {F;}32, C {F; }J , and, therefore, {F,}%2, =
{F},. |

PROPOSITION 12: Let Dy, D5, Gy, G2 be domains and let h;: D; = G;, i = 1,2,
be holomorphic coverings. Suppose that there exist {F}}2; C Aut(D,) such
that for any z, € D, we have h;'(h,(2,)) = UFI{F'(z,)} Then there exists
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{F;}32, € Aut(Dy x Dy) such that for any z = (21,22) € Dy x Dy we have
h=(h(z)) = U;‘f__l{F](z)}, where h(z) := (h1(21), ha(22)).

Proof of Proposition 12: 1t is sufficient to consider {(F}, FZ)}$% ;- |

4. A-coverings

Let D,G be domains in C* and let h: D — G be a holomorphic covering. We
say that h is an A-covering if for any wy € G there exists a neighborhood V; of
wy such that h=1(Vp) = U;‘;l V;, where V; are disjoint open sets, and

lim w(z, U V,,D)=0, z€D.
1=k

k—oo0

Note that any finite covering is an A-covering. The importance of A-coverings
comes from the following result.

THEOREM 13: Let D,G be domains in C* and let h: D — G be an A-covering.
Suppose that there exists {F,}52, C Aut(D) such that for any z € D we have
h=(h(2)) = U,2,{F)(2)}. Then for any pluripolar set P C D we have

h(P)g = h(Pp).
Moreover, if P, = Py, (e.g.. D is hyperconvex), then
WP)g = M(Pp) = h(Pp) = h(P)¢.
Before we proceed to the proof, recall the following result.

THEOREM 14 (see [Lev-Pol]): Let D,G be domains in C* and let h: D —» G
be an A-covering. Then for any subset Q C G and any wg € ) there exists a
neighborhood Vy C Y of wgy such that

w(z, =Y QN Vo), D) = w(h(2),Q N Vo, G).

Therefore, [7™1(Q Vo)lp = A (Q N Velg)-
For the proof of Theorem 13 we need also the following localization result.

LEMMA 15: Let D be a domain in C* and let P C D be a pluripolar set. Let
{Via}xea be an open covering of P. Then

Py=JPnW)p and Pp=JPnW)p.
AEA AEA
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Proof of Lemma 15: 1t follows immediately that Py, D (Jyca(P N Va)p and
PB ) U)‘eA(Pn V)\)l—)'

Take a countable set {);}52; C A such that J;2, Vo, D P. According to
Lemma 9 we have

o0
U@nwp>(JPnW,)p=Pp
A€EA =1

and

o0
U@env)soJPnvi)b=rP5 8
A€A =1

COROLLARY 16: Let D, G be domains in C* and let h: D — G be an A-covering.
Then for any pluripolar set Q C G we have

(hH@)p = 1 (Qa)-
Proof of Corollary 16: The proof is immediate from Theorem 14 and Lemma 15.
]

Proof of Theorem 13: We have
BT (R(P)G) R I (P 1 ((Pp)).

Since h is a covering, h(P)g = h(Pp).
Assume that P}, = Pp. Then by Theorem 6 we get

hP)g 2 h(Pp) = h(Pp) = h(P)g-
We know that h(P)g 2 h(P)g. Hence, h(P)§ = h(P)g and we get the proof.
|
The next result allows us to construct new examples of A-coverings.

PROPOSITION 17: Let h;: D, — G, i = 1,2, be holomorphic A-coverings. Then
h = (h1,hg): D1 x Dy = G; x G is also an A-covering.

The proof of Proposition 17 follows immediately from the following contrac-
tivity of the relative extremal function (see, e.g., [KIi]).

THEOREM 18: Let D ¢ C* and G C C™ be domains. Suppose that h: D — G
is a non-constant holomorphic function. Then for any subset E C D we have

w(z, E,D) > w(h(2),h(E),G), zé€D.

Now we give a characterization of A-coverings in C.
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THEOREM 19: Let D,G be domains in C and let h: D — G be a holomorphic
covering. Assume that G is non-polar. Then 0D is also non-polar and h is an
A-covering.

Proof of Theorem 19: Recall that for a domain @ C C we have 99 is non-polar if
and only if for any point p € Q, ga(-,p) > —oo on @ ~{p} (and this is equivalent
with go # —o0) (see, e.g., [Ran]).

Hence, for any p € G we have gg(-,p) > —oo on G ~{p}. But it is well-known
that gp(z,9) > gc(f(2), f(q)) # —oo for any g € D (see, e.g., [Ran]). So, 9D is
non-polar.

Fix wo and take R > 0 such that h~='(D(wo, R)) = |U;2, Uj, where D(wo, R) =
{w € C: |w— wp| < R} and U, are disjoint domains. Take any r € (0, R). Now
we proceed as in [Edi] to show that

9p(z, {w; }]O?—.k)

og®/r) 0 €D

w(z, | V;,D) >
j=k

where (J;2, V; = h™' (D(wo, r)), h™* (wo) = {w;}32,, and gp(-, {w,}§2,) denotes
the Green function with poles at {w,}2;. Consider the subharmonic function

) L gD(zv {wj}]oik)
W) = e @)

Note that u <0 on D. Take z € V;, j > k. Then

z€D.

gu,(2,w,) _ gngwe,ry(R(2),wp) _ log EEzwol

u(z) < log(R/r) log(R/T) B 10g(RI;T)
Hence o (2, {w; }2,)
A 0 T

It is well-known that
o0
ZgD(z’wy) = gD(Zv{wg}fiﬂ > ga(h(z),wo) > —00, z ¢ {wj}?ir
j=1

Hence,

o
klggozkgp(z,wj) =0, z€eD. |
]:
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THEOREM 20: Let D,G be domains in C and let h : D — G be a holomorphic
covering. Assume that dG is polar. Then for any wy € G and any neighborhood
Vo of wy such that h=1(Vp) = U;‘;l Vj, where V, are disjoint open sets, we have

o0
(3) w(z, [ JV5,D)=-1, z€D, k>1.
i=k

Therefore, h is not an A-covering.

Proof: By the Liouville theorem, any bounded above subharmonic function on
G must be constant. Hence, w(z, F, G) = —1 for any non-empty set F C G.

If 8D is polar then (3) is immediate. So, we may assume that D is non-polar.
It is well-known that in this case, for any relatively compact set F € D there
exists a polar set P C 8D such that

lim w(z,F,D)=0.
z—=8D~ P

We know that (see, e.g., [Lar-Sig])

w(z, | V;, D) = w(h(2),D(a,1),G) = ~1, z€D.

=1

We set u(z) = w(z, U;:ll V;, D) and v(2) = w(z,U;2 Vj, D), 2 € D. Note that

—-1=w(z, | JV;,D) 2 u(z) + v(z)

T

1l

j=1

and that U;':ll V; € D. Therefore, there exists a polar set P C 0D such that

k-1
li ; =0.
z—)@lgl\Pw(z’ U V]’D) 0
j=1
Hence,
limsup v(z) < -1
228D\ P
and, therefore, v < —1. On the other hand v > —1. So, v = —1. [ |

As a corollary of Theorems 13 and 19 we have the following.
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COROLLARY 21: Let Dy,..., D, be domains in C such that 0Dy, ...,dD,, are
non-polar. Put D = Dy X ... x D,,. Then for any pluripolar set P C D we have

P} = Pj.

Proof of Corollary 21: Take universal coverings 7;: D — D,, i =1,...,n, where
I denotes the unit disc in C. We put © = (71,...,7,). Note that m: D* — D
is an A-covering. We put @ := 7~ }(P). According to Theorems 1, 6 and 13 we
have (recall that D" is hyperconvex)

Py =@ S “n(@) ™ Q5™ Br(Q), = Py > P

Hence, P}, = P ]
Proof of Theorem 5: By Corollary 21, it suffices to prove h(P)g = h(Pp).
Take universal coverings 7,: D = D,, i = 1,...,n. We put 7 = (71,...,m,)

and p = (hyomy,...,hy o7,). Note that p: D* — G is an A-covering. We put
Q := 7~ 1(P). According to Theorem 13 we have

p(@p) = P(Q)g = M(P)g-

It remains to note that 7 is also an A-covering. Hence,

p(Qp) = hom(Qp) = h(x(Q)p) = h(Pp). N

5. Extension through closed pluripolar sets

The main result of this part is the following technical, nevertheless very useful
result, special cases of which appeared in [Lev-Pol], [Wiel].

THEOREM 22: Let D be a pseudoconvex domain in C* and let P be a Ilocally
closed pluripolar subset of D. Suppose that S is a closed subset of D such that
PNS =40 andthat Dy € Dy € --- € D,J, D, = D is a sequence of domains.
Suppose also that for any zy € P there exists a neighborhood Uy of 24 such that

(4) w(z,PNUyND,,D,) —»0 when D,~S>z— 8.

Then PHNS = 0.

Before we proceed with the proof of Theorem 22, recall the following result.
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THEOREM 23 (see [Lev-Pol]): Let D,G be domains in C* and let D € G.
Assume that P C D is a compact set, zg € D, V is a neighborhood of zy in
G,and VNP =90. Let K =8V ND. Ifw(2, P,D) = —¢, € > 0, then there is a
point wg € K such that w(wy, P,G) < —e.

Proof of Theorem 22: Fix zp € P. Then there exists vy such that 25 € D,,.
Without loss of generality, we may assume that vy = 1. There exists r > 0 such
that Uy := {z € C* : | z — 2| < 2r} € D; and condition (4) is fulfilled. We put
Py:={2¢€ P:|z— 2| <r}. Note that P, is a compact set and Py C PN Uj.

Fix v > 1 and wq € S. Suppose that w(wq, Py, D) = —¢, € > 0. There exists
§ > 0 such that w(w,PNUyN Dyy1,Dyy1) > —€/2 for w € V, where V =
{w € C" : dist(w,S N D,) < 8}. Then by Theorem 23 there exists w; €
0V N D, such that w(ws, Py, D,41) < —e. Contradiction. Hence, w(wo, Po, D)
= 0. So, w(wp, P NUp,D,) = 0. From this we have wo ¢ (P N Up)p, and,
therefore, wo & (J, (PN D,)p, = Pp. |

6. Some examples and applications

At first we give an example in which we show that there exists a holomorphic
covering and a pluripolar set such that (2) does not hold.

Example 24: Let K be a closed polar set in C such that #K > 2. Put G; :=
C~ K. Suppose that hy: D — Gy is a universal covering. Put

P:={(z%2):2eD}CcDxD

and hy = id: D — G3, where Gy = D. Then P, = P and, therefore, h(Pp;) =
h(P). But, h(P); =G.

Now we consider a special holomorphic covering.

THEOREM 25: Let m: C? 3 (z,w) — (2,e%) € C?. Assume that P C C? is a
pluripolar set. Then

[m(P)lexc. = ([7(P)]tz) N (C x C,) = n(P&),

where C, := C\{0}.
Moreover, if P is a locally closed and for any wg € n(P) there exists a neigh-
borhood Uy C C? of wg such that m~}(x(P)NUp) € C?, then [n(P)]t, = n(P).

Theorem 25 is a generalization of results from [Lev-Pol] and [Wiel].
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Proof of Theorem 25: Put D, := {(\,¢) € C? : |\] < v,Re( < logv} and
G, :={(A\¢) € C? : |A] < 1,]¢| < 1}, v > 0. Note that m: D, — G, ™ A, where
A = C x {0}, is an A-covering and D, is simply connected. Hence,

[f(PN DG, 4 =((PND,)p)-

Therefore,
[r(P)lexe., € ([x(P)]E2) N (C x C)
= (UrP)nG.]g,) n(€xC) = (Jr(PnD.)g,) (€ x C)
=U(PnD)g, 4= Ur((PND.)) = U m((PND)D,)

Cs

m(

[PAD,)p,) C m(Pz) C [m(P)lixc, -

<
Il

For the second part, we have to show that
(5) 7(P)2 NA=0.
There exist compact sets K; such that P = U;’il K;. Note that
x>
(P& = @ (K)e-

j=1

So, (5) is equivalent to m(K;)te NA=0,j > 1.
Fix 7 and put K = K. By Theorem 22 it suffices to show

ww,KNUynND,,D,) =0 whenw— A,v>1,

where Uy is a fixed neighborhood of wy € m(K). We know that there exists a
neighborhood Uy of wy such that

w(z, 7Y m(K)NUy), D)) = w(n(z), K N Uy, D,,).

Suppose that z = (A, {). Note that n(z) — 0 if and only if Re{ — —oco0. It
suffices to note that

w(z, 717 (K) N Vo), D) 2 w(p(2), p(n~ (n(K) N Uy)),H,) — 0
when Re p(2) = —oo,

where p: C2 3 (\,¢) — ¢ € C is a projection. [ |
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COROLLARY 26: (a) Let ¢ be a holomorphic function on C. Put
Q= {(¢(1),e) : A € C}.
If (¢,exp): C — C? is injective, then Qf, = Q.
(b) Let 9 be a meromorphic function on C. Put
R:={(\e'M):xeCN{p~(0)}})-

Then R¢, = R and, therefore, R is a complete pluripolar set in C?.

Proof of Corollary 26: Easily follows from Theorems 25 and 2. |
Let S be a subset in C*. We say that S is pluri-thin at zo € C* if 20 € S\ S
or there exists a plurisubharmonic function u € PSH(C") such that

limsup  u(2) < u(zo).
2—20,2€E ~{z}

It is well-known that a real-analytic curve is not pluri-thin at each of its points
(see, e.g., [Sad]).

The following simple remark shows a relation between pluri-thin points and
pluripolar hull.

Remark 27: Let P be a pluripolar set in C*. Then P is pluri-thin at any point
of P\ Pp..

Proof of Remark 27: Assume that zp € P\ Pg,. Then there exists a psh
function « on C" such that u|p = —o0 and u(z) > —oo.

A. Sadullaev (see [Sad]) asked whether the following sets are pluri-thin at the
origin:

(6) P :={(t*t):0<t <1} c C?,
where o > 0 is irrational, and
(7) Py = {(t,et): -1 <t < 0}.

Note that the existence of a plurisubharmonic function u € PSH(C?) such that
Py c {z € C? : u(z) = —o0} (respectively, P» C {z € C* : u(z) = —oo}) such
that u(0) > —oo will solve positively A. Sadullaev’s question.

Let us consider the following sets:

Fyi={(e*)): e C} Cc C?,
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where a > 0 is irrational, and
Fy:={(\1/)): 2 eC,} c C2

COROLLARY 28: (a) [7(F1)]gz = m(F}1). (b) The set m(F3) is complete pluripolar
in C2.

So, Corollary 28 gives a positive answer to both questions of A. Sadullaev. Part
(a) of Corollary 28 was proved by N. Levenberg and E. A. Poletsky [Lev-Pol] and
part (b) by J. Wiegerinck [Wiel, Wie2].
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